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Abstract

A direct cut-elimination procedure is proposed, which works for the sequent calculi not only of the

classical and the intuitionistic logics but also of the standard modal logics. In the procedure, we

do not introduce the inference rule mix but eliminate the usual rule cut directly. We demonstrate

the method to establish the cut-elimination theorem for the hyper sequent calculus for the modal

logic S5.
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1 Introduction

The cut-elimination theorem is the fundamental the-

orem on proof theory in mathematical logic. It is

a sort of normalization theorem on proofs in logical

systems. The normal form of a proof, that is, a proof

containing no inference rule cut in the style of sequent

calculus, has an important property called the subfor-

mula property: every formula occurring in a proof is

a subformula of the end-formula of the proof. This

property is useful to derive some basic properties of a

proof system including consistency of the proof sys-

tem.

The cut-elimination theorem was originally estab-

lished by Gentzen [8, 9] in the 1930’s for the sequent

calculi for the classical predicate logic and the intu-

itionistic predicate one called LK and LJ, respectively.

Further Gentzen established consistency for a formal

system of elementary number theory based on consis-

tency of LK by extending a finitary method of proof

theory in a specific way.

Gentzen introduced the rule called mix and consid-

ered the sequent calculi where mix is substituted for

cut to facilitate the proof of the cut-elimination for LK

and LJ. The rule mix is a generalization of cut, and it

is enough to provide a procedure of mix-elimination

for proofs to establish the cut-elimination. Then it

is quite natural that there have been a line of studies

on the direct cut-elimination: how to eliminate cut di-

rectly without introducing mix (Szabo [20], Buss [5],
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1Japan Coast Guard Academy, hkushida@jcga.ac.jp

Borisavljević [2–4], von Plato [19]).

The methods of Borisavljević [2–4] are basi-

cally certain refinements of Gentzen’s original proof-

transformation; they are based on the method of lift-

ing up a fixed application of cut by permuting it with

the application of the inference rule just above the

cut one by one, until the above application is the ini-

tial sequent or the rule weakening introducing the

cut formula. We call this kind of method the permu-

tation method. Gentzen developed this method by

using mix instead of cut.

There is another method of the direct cut-

elimination, which we call the formula-reduction

method. In Buss [5] the cut-elimination is executed

by reducing the cut formula to an atomic formula

or the smallest sub-formula introduced in the proof

under consideration. Here, the position of a fixed ap-

plication of cut is not moved in a given proof. In

von Plato [19], the permutation method appears to

be basically taken; however, the crucial part of the

transformation is concerned with the application of

the rule contraction to be permuted with the cut and

then the method of formula-reduction is taken for this

part.

In the present paper, another method of the direct

cut-elimination is proposed, which we shall call top-

down. By this method we lift up a fixed application of

cut all at once so that the cut formula is a sub-formula

of the original cut formula. Then, it is verified that

the inference rules applied between the new and old

locations of cut are preserved, though this verification

is straightforward.

An advantage of this topdown method is, as we
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demonstrate below, that it can be applied to a wide

range of non-classical logic, in particular, modal logic.

It is not clear if the former two methods work for

modal logic systems, where there are characteristic

rules for modality which depend on environment of

sequents. For example, it is easy to see that the

formula-reduction method does not work for most of

modal logic systems. Suppose that we are given a

proof ending with the following cut.

Γ ⇒ ∆, B ∧ C B ∧ C,Π ⇒ Θ

Γ,Π ⇒ ∆,Θ

In the formula-reduction method, the applications

of inference rules introducing the cut formula are

deleted with some modifications on structural rules

to obtain the proofs of

Γ ⇒ ∆, B

Γ ⇒ ∆, C

and B,C,Π ⇒ Θ.

However, when the cut formula is a modal formula

�B, in most systems of modal logic, it is not generally

possible to obtain the proofs of

Γ ⇒ ∆, B and B,Π ⇒ Θ.

This is due to the nature of inference rules for

modality; there are certain constraints on auxiliary

formulas in those rules. In particular, we can con-

sider the case when the cut formula �B in the right

upper sequent of the cut is introduced by an applica-

tion, say α, of rule on modality. Then it is possible

that a descendant occurrence of �B is an auxiliary

formula of some applications of rules on modality be-

tween α and the cut. In such a case, when �B is

changed to B, those applications of rules on modality

are not preserved between α and the cut.

On the other hand, the topdown method works for

such cases as this. We demonstrate our method for a

strong system of modal logic, S5. By this we intend

to suggest that the method works for a wide range

of modal logic systems like K, T, D, S4. Also, the

logic S5 has been of a particular interest in the re-

search community. In particular, the proof theoretic

or syntactic analyses of S5 have attracted attention

from researchers, apart from the recent treatments of

the modal logics via hypersequent or other extended

sequent. E.g. [6, 7, 11,12,14,15,17,18,21].

This paper is organized as follows. In §2, we in-

troduce the modal logic called S5 with its axiomatic

system, and formulate a hypersequent calculus for S5.

In §3, the cut-elimination theorem for S5 is proven by

the topdown method.

1.1 On a Paper by Mints

Kurokawa [13] provided the author an opportunity

to take notice of a paper by Mints, after he wrote a

final draft of the current paper. The paper [16] by

Mints does not handle the subject: the direct cut-

elimination, and, thus, there is no reference in [16]

to the above-mentioned papers on the subject: Sz-

abo [20], Borisavljević [2,4], Borisavljević, Dosen and

Petric [3], von Plato [19]. Anyway we must note

that the method proposed in [16] is essentially the

same as the ”topdown method” in the current paper.

However, we claim that the following points are still

certain contributions of the current paper for the re-

search subject.

• In Mints’ proof, systems are adopted where the

structural rules are built in the sequent. Therefore,

Mints [16] essentially gave a cut-elimination proce-

dure for the system with mix-rule. Thus, it is not

yet clear whether the method is applicable for the di-

rect cut-elimination. In the current paper we actually

perform the method for the system explicitly contain-

ing structural rules to solve the problem of the direct

cut-elimination.

• The subject of Mints [16] was to establish the cut-

elimination for the sequent calculus of a special kind

of modal logic, which is very interesting, the logic of

continuous transformations of a topological space in-

troduced by Artemov, Davoren and Nerode [1]. On

the other hand, our target is a standard and basic

modal logic, S5, and the result exposed in the current

paper shows the applicability of the topdown method

to the hypersequent calculus, an important and stan-

dard extention of sequent calculus. The hypersequent

calculus for S5 is considered to be the most natural

proof system for S5.

In addition, Mints’ paper [16] explained another

cut-elimination method for the classical propositional

logic. This is essentially the same as the one we

call the ”formula-reduction” method due to Buss [5],

which is not cited in [16].

－ 2 －
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2 Modal Logic S5

Modal logic is originally a discipline regarding logical

inference involving modality of necessity and possibil-

ity. Nowadays modal logic has been actively studied

as epistemic logic, temporal logic, and deontic logic,

among others, with various interpretations of modal-

ity.

In this section, we review the axiomatic system for

the modal logic S5 and then provide a definition of

our hypersequent system for S5.

We use logical symbols ¬, ∧, and ∨ for negation

(‘not’), conjunction (‘and’), and disjunction (‘or’), re-

spectively. Also, the symbol � is used as the modality

of necessity. The formulas of modal logic are con-

structed in the following grammar.

A → ⊥|p|¬A|A ∧A|A ∨A|�A

Here, p is an atomic formula; ⊥ is a constant to sig-

nify falsehood. In the grammar we do not take into

consideration the other modality of possibility � nor

the other propositional connectives like implication

→, because they are defined in terms of ∧,¬ and �.

In the following we use → freely.

The axiomatic system of the modal logic S5 is

the classical propositional logic (of this language) ex-

tended with the inference rule called the necessitation

rule: “⊢ A implies ⊢ �A” and the following axioms

called K,T, 4, 5. 1

K �(A → B) → (�A → �B)

T �A → A

4 �A → ��A

5 ¬�A → �¬�A

Actually the 4-axiom is admissible in S5. Let us

note that the 4- and 5-axioms are interesting in terms

of epistemic interpretation. Consider a modality with

an index, �aA. It typically reads as “A is known to

agent a”.

4 : �aA → �a�aA

5 : ¬�aA → �a¬�aA

Then, the two axioms express an agent’s ability for

the positive and negative introspection, respectively:

“if an agent knows something, she knows that she

1These are actually axiom schemata (and we do not adopt
the substitution rule), although we just call them axioms.

knows it” and “if she does not know something, she

knows that she does not know it”.

2.1 Hypersequent Calculus for S5

We define sequents with the formula image f of them.

When Γ and ∆ are multisets of formulas, the form

Γ ⇒ ∆ is a sequent. Its formula image is defined by:

f(Γ ⇒ ∆) = �(
∧
Γ ⊃

∨
∆).

Sequents are denoted by S, T, U, . . . , possibly with

integer subscripts. When S1, . . . Sn are sequents, the

form S1|S2| · · · |Sn is a hypersequent and its formula

image is defined as follows.

f(S1|S2| · · · |Sn) = f(S1) ∨ · · · ∨ f(Sn)

Hypersequents are denoted by H, I, . . . possibly

with integer subscripts.

Hypersequent calculi are natural generalizations of

sequent calculi. Several variations of hypersequent

calculi for S5 and the cut-elimination for them are

reviewed and analyzed in Bednarska and Indrzejczak

[10]. Here, the hypersequent calculus for S5 we de-

fine below is another variant similar to Avron’s and

Kurokawa’s systems. (We refer to [10] for these and

other former systems.)

• Initial Sequents: A ⇒ A ⊥ ⇒

• Logical Inference Rules:

H|Γ ⇒ ∆, A

H|Γ ⇒ ∆, A ∨B
∨ : r

H|Γ ⇒ ∆, B

H|Γ ⇒ ∆, A ∨B
∨ : r

H|A,Γ ⇒ ∆ H|B,Γ ⇒ ∆

H|A ∨B,Γ ⇒ ∆
∨ : l

H—

Γ ⇒ ∆, A H|Γ ⇒ ∆, B

H|Γ ⇒ ∆, A ∧B
∧ : r

H|A,Γ ⇒ ∆

H|A ∧B,Γ ⇒ ∆
∧ : l

H|B,Γ ⇒ ∆

H|A ∧B,Γ ⇒ ∆
∧ : l

H|A,Γ ⇒ ∆

H|Γ ⇒ ∆,¬A
¬ : r

H|Γ ⇒ ∆, A

H|¬A,Γ ⇒ ∆
¬ : l

• Internal Structural Inference Rules:

H|A,A,Γ ⇒ ∆

H|A,Γ ⇒ ∆
ic

H|Γ ⇒ ∆, A,A

H|Γ ⇒ ∆, A
ic

H|Γ ⇒ ∆

H|A,Γ ⇒ ∆
iw

H|Γ ⇒ ∆

H|Γ ⇒ ∆, A
iw

H|Γ ⇒ ∆, A H|A,Π ⇒ Θ

H|Γ,Π ⇒ ∆,Θ
cut

demonstrate below, that it can be applied to a wide

range of non-classical logic, in particular, modal logic.

It is not clear if the former two methods work for

modal logic systems, where there are characteristic

rules for modality which depend on environment of

sequents. For example, it is easy to see that the

formula-reduction method does not work for most of

modal logic systems. Suppose that we are given a

proof ending with the following cut.

Γ ⇒ ∆, B ∧ C B ∧ C,Π ⇒ Θ

Γ,Π ⇒ ∆,Θ

In the formula-reduction method, the applications

of inference rules introducing the cut formula are

deleted with some modifications on structural rules

to obtain the proofs of

Γ ⇒ ∆, B

Γ ⇒ ∆, C

and B,C,Π ⇒ Θ.

However, when the cut formula is a modal formula

�B, in most systems of modal logic, it is not generally

possible to obtain the proofs of

Γ ⇒ ∆, B and B,Π ⇒ Θ.

This is due to the nature of inference rules for

modality; there are certain constraints on auxiliary

formulas in those rules. In particular, we can con-

sider the case when the cut formula �B in the right

upper sequent of the cut is introduced by an applica-

tion, say α, of rule on modality. Then it is possible

that a descendant occurrence of �B is an auxiliary

formula of some applications of rules on modality be-

tween α and the cut. In such a case, when �B is

changed to B, those applications of rules on modality

are not preserved between α and the cut.

On the other hand, the topdown method works for

such cases as this. We demonstrate our method for a

strong system of modal logic, S5. By this we intend

to suggest that the method works for a wide range

of modal logic systems like K, T, D, S4. Also, the

logic S5 has been of a particular interest in the re-

search community. In particular, the proof theoretic

or syntactic analyses of S5 have attracted attention

from researchers, apart from the recent treatments of

the modal logics via hypersequent or other extended

sequent. E.g. [6, 7, 11,12,14,15,17,18,21].

This paper is organized as follows. In §2, we in-

troduce the modal logic called S5 with its axiomatic

system, and formulate a hypersequent calculus for S5.

In §3, the cut-elimination theorem for S5 is proven by

the topdown method.

1.1 On a Paper by Mints

Kurokawa [13] provided the author an opportunity

to take notice of a paper by Mints, after he wrote a

final draft of the current paper. The paper [16] by

Mints does not handle the subject: the direct cut-

elimination, and, thus, there is no reference in [16]

to the above-mentioned papers on the subject: Sz-

abo [20], Borisavljević [2,4], Borisavljević, Dosen and

Petric [3], von Plato [19]. Anyway we must note

that the method proposed in [16] is essentially the

same as the ”topdown method” in the current paper.

However, we claim that the following points are still

certain contributions of the current paper for the re-

search subject.

• In Mints’ proof, systems are adopted where the

structural rules are built in the sequent. Therefore,

Mints [16] essentially gave a cut-elimination proce-

dure for the system with mix-rule. Thus, it is not

yet clear whether the method is applicable for the di-

rect cut-elimination. In the current paper we actually

perform the method for the system explicitly contain-

ing structural rules to solve the problem of the direct

cut-elimination.

• The subject of Mints [16] was to establish the cut-

elimination for the sequent calculus of a special kind

of modal logic, which is very interesting, the logic of

continuous transformations of a topological space in-

troduced by Artemov, Davoren and Nerode [1]. On

the other hand, our target is a standard and basic

modal logic, S5, and the result exposed in the current

paper shows the applicability of the topdown method

to the hypersequent calculus, an important and stan-

dard extention of sequent calculus. The hypersequent

calculus for S5 is considered to be the most natural

proof system for S5.

In addition, Mints’ paper [16] explained another

cut-elimination method for the classical propositional

logic. This is essentially the same as the one we

call the ”formula-reduction” method due to Buss [5],

which is not cited in [16].
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• External Structural Inference Rules

H
H|S

ew
H|Γ ⇒ ∆|Θ ⇒ Π

H|Γ,Θ ⇒ ∆,Π
merge

• Inference Rules for Modality

H|�Γ ⇒ A

H|�Γ ⇒ �A
� : r

H|A,Γ ⇒ ∆

H|�A,Γ ⇒ ∆
� : r

H|�A,Γ ⇒ ∆

H|�A ⇒ |Γ ⇒ ∆
move

Here, A in cut is called the cut formula.

3 Topdown Cut-Elimination

In this section, we establish the cut-elimination for S5

by executing the topdown method.

Theorem 3. 1. Let H be a hypersequent provable in

the hypersequent calculus for S5. Then, it is possible

to construct a cut-free proof of H in it.

Let P be any proof in the hypersequent calculus for

S5 where the only application of cut occurs in the last

step in the following form.

H|Γ ⇒ ∆, A H|A,Π ⇒ Θ

H|Γ,Π ⇒ Θ,∆
cut

We are going to eliminate this application of cut

without increasing other applications of cut or chang-

ing the end-hypersequent.

Without loss of generality, we restrict the form of

the initial sequent A ⇒ A to p ⇒ p with an atomic

formula p.

Suppose that there are n- (and m-, respectively)

many applications of the logical inference rule, iw,

ew, or the initial sequent introducing the cut formula

A on the left (and right, respectively) upper sequent

of the cut.

Let (Q1, . . . , Qn) and (R1, . . . , Rm), respectively,

be the lists of the paths starting from the lower hy-

persequent of a rule introducing A and ending with

the left and right, respectively, lower hypersequent of

the cut.

Proceed by induction on the size of the cut formula

A, that is, the number of occurrences of logical sym-

bols and the modality � in A.

Base Case 1. A is an atomic formula p.

Suppose that P has the following form.

p ⇒ p

Qi

...

p ⇒ p

Rj

...

H|Γ ⇒ ∆, p H|p,Π ⇒ Θ

H|Γ,Π ⇒ ∆,Θ
cut

For each Rj , we make a replacement as follows.

• When Rj starts with p ⇒ p, replace it with the

subproof of H|Γ ⇒ ∆, p.

p ⇒ p �

.. . .. . .. . ......

H|Γ ⇒ ∆, p

• When Rj starts with iw, execute the following

replacement.

.. . .. . .. . ......

Jj |Σj ⇒ Ψj

Jj |p,Σj ⇒ Ψj
iw

▽

.. . .. . .. . ......

Jj |Σj ⇒ Ψj

Jj |H|Γ,Σj ⇒ ∆,Ψj
iw, ew

• When Rj starts with ew, execute the following

replacement.

.. . .. . .. . ......

Jj

Jj |p,Σj ⇒ Ψj

ew

▽

.. . .. . .. . ......

Jj

Jj |H|Γ,Σj ⇒ ∆,Ψj
iw, ew

Now, simulate all Rj ’s under these replacements.

Then we obtain the original end-hypersequent, by

adding applications of merge in the last part.

Base Case 2. A is an atomic formula ⊥.

Suppose that P has the following form.

⊥ ⇒ ⊥

Qi

...

⊥ ⇒

Rj

...
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H|Γ ⇒ ∆,⊥ H|⊥,Π ⇒ Θ

H|Γ,Π ⇒ ∆,Θ
cut

For each Qi, we make a replacement as follows.

• When Qi starts with ⊥ ⇒ ⊥, make a replacement

as follows.

⊥ ⇒ ⊥ � ⊥ ⇒

• When Qi starts with iw, we make the following

replacement.

.. . .. . .. . ......

Ki|Φi ⇒ Ξi

Ki|Φi ⇒ Ξi,⊥
iw

▽

.. . .. . .. . ......

Ki|Φi ⇒ Ξi

• When Rj starts with ew, execute the following

replacement.

.. . .. . .. . ......

Ki

Ki|Φi ⇒ Ξi,⊥
ew

▽

.. . .. . .. . ......

Ki

Ki|Φi ⇒ Ξi

ew

Now, simulate all Qi’s under these replacements

to obtain the hypersequent H|Γ ⇒ ∆. By apply-

ing iw several times, we obtain the original end-

hypersequent H|Γ,Π ⇒ ∆,Θ.

In the Induction Step, we proceed according to the

cases on the form of A. We treat two cases; other

cases are similarly proved.

Case 1. A = B ∧ C. Suppose that P has the

following form.

Ki|Φi ⇒ Ξi, B Ki|Φi ⇒ Ξi, C

Ki|Φi ⇒ Ξi, B ∧ C
∧ : r

Qi

.

..

Jj |B,Σj ⇒ Ψj

Jj |B ∧ C,Σj ⇒ Ψj
∧ : l

Rj

...

H|Γ ⇒ ∆, B ∧ C H|B ∧ C,Π ⇒ Θ

H|Γ,Π ⇒ ∆,Θ
cut

Take Q1. We distinguish cases as follows.

Case a. When Q1 starts with iw or ew, make the

following replacement.

K1|Φ1 ⇒ Ξ1

K1|Φ1 ⇒ Ξ1, B ∧ C
�

K1|Φ1 ⇒ Ξ1

H|K1|Φ1,Π ⇒ Ξ1,Θ

K1

K1|Φ1 ⇒ Ξ1, B ∧ C
�

K1

H|K1|Φ1,Π ⇒ Ξ1,Θ

Case b. When Q1 starts with ∧ : r. For each Rj ,

we make a replacement as follows.

• When Rj starts with ∧ : l, replace it with cut

with K1|Φ1 ⇒ Ξ1, B or K1|Φ1 ⇒ Ξ1, C.

Jj |B,Σj ⇒ Ψj

Jj |B ∧ C,Σj ⇒ Ψj

▽

K1|Φ1 ⇒ Ξ1, B

Jj |K1|Φ1 ⇒ Ξ1, B

Jj |B,Σj ⇒ Ψj

Jj |K1|B,Σj ⇒ Ψj

Jj |K1|Φ1,Σj ⇒ Ξ1,Ψj

Jj |C,Σj ⇒ Ψj

Jj |B ∧ C,Σj ⇒ Ψj

▽

K1|Φ1 ⇒ Ξ1, C

Jj |K1|Φ1 ⇒ Ξ1, C

Jj |C,Σj ⇒ Ψj

Jj |K1|C,Σj ⇒ Ψj

Jj |K1|Φ1,Σj ⇒ Ξ1,Ψj

• When Rj starts with iw, execute the following

replacement.

Jj |Σj ⇒ Ψj

Jj |B ∧ C,Σj ⇒ Ψj
�

Jj |Σj ⇒ Ψj

Jj |K1|Φ1,Σj ⇒ Ξ1,Ψj

• When Rj starts with ew, execute the following

replacement.

Jj

Jj |B ∧ C,Σj ⇒ Ψj
�

Jj

Jj |K1|Φ1,Σj ⇒ Ξ1,Ψj

In this way, for each 1 ≤ j ≤ m, we obtain

the hypersequent Jj |K1|Φ1,Σj ⇒ Ξ1,Ψj . Then,

we simulate each Rj to obtain the hypersequent

H|K1|Φ1,Π ⇒ Ξ1,Θ.

• External Structural Inference Rules

H
H|S

ew
H|Γ ⇒ ∆|Θ ⇒ Π

H|Γ,Θ ⇒ ∆,Π
merge

• Inference Rules for Modality

H|�Γ ⇒ A

H|�Γ ⇒ �A
� : r

H|A,Γ ⇒ ∆

H|�A,Γ ⇒ ∆
� : r

H|�A,Γ ⇒ ∆

H|�A ⇒ |Γ ⇒ ∆
move

Here, A in cut is called the cut formula.

3 Topdown Cut-Elimination

In this section, we establish the cut-elimination for S5

by executing the topdown method.

Theorem 3. 1. Let H be a hypersequent provable in

the hypersequent calculus for S5. Then, it is possible

to construct a cut-free proof of H in it.

Let P be any proof in the hypersequent calculus for

S5 where the only application of cut occurs in the last

step in the following form.

H|Γ ⇒ ∆, A H|A,Π ⇒ Θ

H|Γ,Π ⇒ Θ,∆
cut

We are going to eliminate this application of cut

without increasing other applications of cut or chang-

ing the end-hypersequent.

Without loss of generality, we restrict the form of

the initial sequent A ⇒ A to p ⇒ p with an atomic

formula p.

Suppose that there are n- (and m-, respectively)

many applications of the logical inference rule, iw,

ew, or the initial sequent introducing the cut formula

A on the left (and right, respectively) upper sequent

of the cut.

Let (Q1, . . . , Qn) and (R1, . . . , Rm), respectively,

be the lists of the paths starting from the lower hy-

persequent of a rule introducing A and ending with

the left and right, respectively, lower hypersequent of

the cut.

Proceed by induction on the size of the cut formula

A, that is, the number of occurrences of logical sym-

bols and the modality � in A.

Base Case 1. A is an atomic formula p.

Suppose that P has the following form.

p ⇒ p

Qi

...

p ⇒ p

Rj

...

H|Γ ⇒ ∆, p H|p,Π ⇒ Θ

H|Γ,Π ⇒ ∆,Θ
cut

For each Rj , we make a replacement as follows.

• When Rj starts with p ⇒ p, replace it with the

subproof of H|Γ ⇒ ∆, p.

p ⇒ p �

.. . .. . .. . ......

H|Γ ⇒ ∆, p

• When Rj starts with iw, execute the following

replacement.

.. . .. . .. . ......

Jj |Σj ⇒ Ψj

Jj |p,Σj ⇒ Ψj
iw

▽

.. . .. . .. . ......

Jj |Σj ⇒ Ψj

Jj |H|Γ,Σj ⇒ ∆,Ψj
iw, ew

• When Rj starts with ew, execute the following

replacement.

.. . .. . .. . ......

Jj

Jj |p,Σj ⇒ Ψj

ew

▽

.. . .. . .. . ......

Jj

Jj |H|Γ,Σj ⇒ ∆,Ψj
iw, ew

Now, simulate all Rj ’s under these replacements.

Then we obtain the original end-hypersequent, by

adding applications of merge in the last part.

Base Case 2. A is an atomic formula ⊥.

Suppose that P has the following form.

⊥ ⇒ ⊥

Qi

...

⊥ ⇒

Rj

...
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Jj |K1|Φ1,Σj ⇒ Ξ1,Ψj

Rj
.. . .. . .. . ......

H|K1|Φ1,Π ⇒ Ξ1,Θ

We illustrate below a simple case when m = 2; R1,2

correspond to the above first and third cases.

J1|B,Σ1 ⇒ Ψ1

J1|B ∧ C,Σ1 ⇒ Ψ1

J2

J2|B ∧ C,Σ2 ⇒ Ψ2

.. . .. . .. . ......

H|B ∧ C,Π ⇒ Θ

▽

K1|Φ1 ⇒ Ξ1, B

J1|K1|Φ1 ⇒ Ξ1, B

J1|B,Σ1 ⇒ Ψ1

J1|K1|B,Σ1 ⇒ Ψ1

J1|K1|Φ1,Σ1 ⇒ Ξ1,Ψ1

J2

J2|K1|Φ1,Σ2 ⇒ Ξ1,Ψ2

.. . .. . .. . ......

H|K1|Φ1,Π ⇒ Ξ1,Θ

Now, we repeat this procedure for Q2, . . . , Qn to

obtain the subproofs of H|Ki|Φi,Π ⇒ Ξi,Θ (1 ≤ i ≤
n). Then, we can simulate Q1, Q2, . . . , Qn to obtain

the original end-hypersequent. The transformation is

depicted as follows.

Ki|Φi ⇒ Ξi, B ∧ C

Qi .. . .. . .. . ......

H|Γ ⇒ ∆, B ∧ C

▽

H|Ki|Φi,Π ⇒ Ξi,Θ

Qi .. . .. . .. . ......

H|H|Γ,Π ⇒ ∆,Θ

H|Γ,Π ⇒ ∆,Θ

Here, we add applications of merge in the last part

to obtain the original end-hypersequent.

Case 2. A = �B. Suppose that P has the following

form.

Ki|�Φi ⇒ B

Ki|�Φi ⇒ �B
� : r

Qi

...

Jj |B,Σj ⇒ Ψj

Jj |�B,Σj ⇒ Ψj
� : l

Rj

...

H|Γ ⇒ ∆,�B H|�B,Π ⇒ Θ

H|Γ,Π ⇒ ∆,Θ
cut

Take Q1. We distinguish cases as follows.

Case a. When Q1 starts with iw or ew, make the

following replacement.

K1|Φ1 ⇒ Ξ1

K1|Φ1 ⇒ Ξ1,�B
�

K1|Φ1 ⇒ Ξ1

H|K1|Φ1,Π ⇒ Ξ1,Θ

K1

K1|Φ1 ⇒ Ξ1,�B
�

K1

H|K1|Φ1,Π ⇒ Ξ1,Θ

Case b. When Q1 starts with � : r. For each Rj ,

we make a replacement as follows.

• When Rj starts with � : l, replace it with cut

with K1|�Φ1 ⇒ �B.

Jj |B,Σj ⇒ Ψj

Jj |�B,Σj ⇒ Ψj

▽

K1|�Φ1 ⇒ B

Jj |K1|�Φ1 ⇒ B

Jj |B,Σj ⇒ Ψj

Jj |K1|B,Σj ⇒ Ψj

Jj |K1|�Φ1,Σj ⇒ Ψj

• When Rj starts with iw, execute the following

replacement.

Jj |Σj ⇒ Ψj

Jj |�B,Σj ⇒ Ψj
�

Jj |Σj ⇒ Ψj

Jj |K1|�Φ1,Σj ⇒ Ψj

• When Rj starts with ew, execute the following

replacement.

Jj

Jj |�B,Σj ⇒ Ψj
�

Jj

Jj |K1|�Φ1,Σj ⇒ Ψj

In this way, in Case b, for each 1 ≤ j ≤ m,

we obtain the hypersequent Jj |K1|�Φ1,Σj ⇒ Ψj .

Then, we simulate each Rj to obtain the hyperse-

quent H|K1|�Φ1,Π ⇒ Θ.

Jj |K1|�Φ1,Σj ⇒ Ψj

Rj
.. . .. . .. . ......

H|K1|�Φ1,Π ⇒ Θ
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Here, in this simulation, if there occur an appli-

cation of move-rule moving �B to another sequent,

we must replace it with a series of move-rule each of

which moves a modal formula from �Φ1.

We illustrate below a simple case when m = 2; R1,2

correspond to the above first and second cases in Case

b.

J1|B,Σ1 ⇒ Ψ1

J1|�B,Σ1 ⇒ Ψ1

J2|Σ2 ⇒ Ψ2

J2|�B,Σ2 ⇒ Ψ2

.. . .. . .. . ......

H|�B,Π ⇒ Θ

▽

K1|�Φ1 ⇒ B

J1|K1|�Φ1 ⇒ B

J1|B,Σ1 ⇒ Ψ1

J1|K1|B,Σ1 ⇒ Ψ1

J1|K1|�Φ1,Σ1 ⇒ Ψ1

J2

J2|K1|�Φ1,Σ2 ⇒ Ψ2

.. . .. . .. . ......

H|K1|�Φ1,Π ⇒ Θ

Now, we repeat this procedure for Q2, . . . , Qn

to obtain the subproofs of H|Ki|Φi,Π ⇒ Ξi,Θ or

H|Ki|�Φi,Π ⇒ Θ (1 ≤ i ≤ n). Then, we can

simulate Q1, Q2, . . . , Qn to obtain the original end-

hypersequent. We illustrate a simple case n = 2; Q1

and Q2 correspond to Case a and Case b, respectively.

K1|Φ1 ⇒ Ξ1,�B K2|�Φ1 ⇒ �B

Q1 Q2

.. . .. . .. . ......

H|Γ ⇒ ∆,�B

▽

H|K1|Φ1,Π ⇒ Ξ1,Θ H|K2|�Φ1,Π ⇒ Θ

Q1 Q2

.. . .. . .. . ......

H|H|Γ,Π ⇒ ∆,Θ

H|Γ,Π ⇒ ∆,Θ

Here, we add applications of merge in the last part

to obtain the original end-hypersequent.
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